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ABSTRACT: Tapered diblock copolymers are similar to AB diblock copolymers,
but the sharp junction between the A and B blocks is replaced with a gradient region
in which composition varies from mostly A to mostly B along its length. The A side
of the taper can be attached to the A block (normal) or the B block (inverse). We
demonstrate how taper length and direction affect the phase diagrams and density
profiles using self-consistent field theory. Adding tapers shifts the order−disorder
transition to lower temperature versus the diblock, and this effect is larger for longer
tapers and for inverse tapers. However, tapered systems’ phase diagrams and
interfacial profiles do not simply match those of diblocks at a shifted effective
temperature. For instance, we find that normal tapering widens the bicontinuous gyroid region of the phase diagram, while
inverse tapering narrows this region, apparently due to differences in polymer organization at the interfaces.

Amphiphilic molecules such as diblock copolymers,
composed of two components that would tend to phase

separate but are bonded into the same molecule, are well-
known to microscopically phase separate to form various
ordered structures.1,2 For an AB diblock copolymer, the
tendency to phase separate depends on the fraction of A
monomers, fA, and χN, where N is polymer length and the
Flory χ parameter quantifies the degree to which A and B
monomers tend to phase separate. A significant understanding
of the microphase-separated morphologies as a function of
polymer type and architecture has resulted from decades of
experimental and theoretical work in this area, and many
strategies to control the morphology by adjusting polymer type
and architecture, adding homopolymers, or blending different
copolymers together have been studied.3,4 The ability to form
bicontinuous phases is of special interest; for instance, in a
polymer membrane used for separations or transport, one
continuous phase could impart favorable mechanical properties
while the other phase conducts ions.5 Typical diblock
copolymers can form bicontinuous phases, but the region of
phase space where these are preferred is small, especially at high
χN.6 However, high molecular weight (large N) might be
desired for mechanical properties. The fact that χN controls the
phase behavior, but large N is required and χ depends on
polymer choice (constrained by application-specific require-
ments), presents a fundamental restriction in design of these
materials.
Linear tapered diblock copolymers, in which a linear gradient

“block” is added between the pure A and B blocks of an AB
diblock system (see Figure 1a), have attracted significant recent
interest as a potential solution to this issue. The fraction of
taper acts as an additional control parameter, and the taper can

be in the normal or inverse direction as shown in Figure 1b.
However, rational control of the microphase-separated state
through tapering cannot be fully realized without a clear picture
of how tapering adjusts the phase diagram. Predicting the
theoretical phase diagram of model tapered copolymers is the
major goal of the current work.
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Figure 1. Schematic of the model. (a) A normal tapered copolymer:
the A and B blocks are separated by a linear gradient “block”, and the
multiblock model is used to approximate the gradient region. The
gradient region is made of multiple diblock domains of equal size; the
fraction of A in each is varied along the region. (b) An inverse tapered
polymer; the gradient region is reversed. (c) Examples showing the
fraction of A ( fA) and fraction of taper ( f T); the taper can be placed in
the middle of the polymer (left) or at the end of the polymer (right),
or anywhere between these extremes.
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Experimental creation of diblock copolymer analogs but with
a tapered or random AB midblock, or related adjustments to
the sequence, has been possible for some time.7−16 Several
groups investigated how such changes affect the copolymers’
microphase separation.12−16 Recent experimental advances
enabled creation of a set of well-controlled tapered diblock
copolymers with various taper lengths and with both normal
and inverse tapers.5,17,18 These systems have also been well
characterized; importantly, the bicontinuous gyroid phase was
confirmed to exist for some volume fractions.17 This partly
motivates the current work, and some of the data such as the
order−disorder transition (ODT) temperatures are useful as an
initial check on the validity of the model.18

A large body of prior theory and simulation work determined
the phase diagrams and density profiles of typical diblock
copolymers and further considered triblocks and many other
copolymer architectures.3 In particular, linear gradient copoly-
mers (100% length tapers) have been studied; for these only
lamellar and disordered phases are predicted.19,20 There has
been relatively less attention paid to systems with modified
interfaces such as tapers; one simulation study did consider
various copolymer composition profiles incluiding a nonlinear
gradient profile akin to our tapered profile.21 Triblocks with a
midblock of a random mixture of the end block monomers
were also studied.22,23 One may expect such a random
midblock system’s behavior to be between that of normal and
inverse tapered systems, but it is unknown to what extent and
how the details of the composition of the midblock affect
microphase separation.
The consensus from prior theoretical diblock work is that the

microphase-separated morphology is dictated by three effects:
(1) the unfavorable interaction between A and B drives the
interfacial area to be minimized with the restriction that the
resultant morphology must fill space (the interface forms a
minimal surface separating the two phases), (2) if the polymer
is asymmetric, the interface tends to curve so the majority
phase has more room to coil at the expense of stretching the
minority phase, and (3) “packing frustration”, meaning it is
unfavorable for some chains to stretch much more than others
(for some geometries this is required due to nonconstant
curvature or to fill space given the placement of the interface).
The lamellae structure has no curvature or packing frustration;
cylinders have a high constant curvature and low packing
frustration (due to stretching of some majority phase chains);
and the gyroid has intermediate nonconstant curvature and
high packing frustration.3,24,25 Versus a typical diblock, we
expect packing frustration is smaller for normal tapers: to fill
space far from the interface, in addition to stretching a tapered
polymer can slide out of place near the interface at a smaller
free energy cost (the interface is more diffuse, and moving
some of the taper into a lamella does not cost as much free
energy as it would for a diblock). This effect should make the
gyroid region wider. The taper also makes complete segregation
of A and B difficult, implying the ODT moves to higher χN. It
has been suggested19 that a broad interface also decreases the
propensity of the interface to curve. In the case of tapers,
curvature may also be disfavored as it implies half of the taper
has less room to coil than the other half, even though the two
sides of the taper are mirror images of each other so would
generally prefer to coil the same way. This would shift the
curved phases toward more asymmetric systems. For normal
tapers, this should be a relatively small effect since much of the
taper is miscible with the pure block to which it is attached.

These issues are complicated for inverse tapers as they may fold
back and forth across the interface at large χN. It is not obvious
which effects dominate for various systems, so here we use
theory to predict the microphase-separated morphology as a
function of taper length/direction.
In experimental systems, polydispersity, the details of the

sequence randomness, and differences (such as in monomer
size or stiffness) in A and B blocks could affect the system in
important ways; in some cases, other bicontinuous phases could
be preferred over gyroid. None of these effects are considered
here, though some have been studied by others.20,26−29

Potentially relevant to the idea that tapering may reduce
packing frustration leading to widening of the gyroid window
are studies of polydisperse systems. In these systems, short and
long chains can be arranged in different locations to reduce
packing frustration. The region of nonlamellar phases does
widen as polydispersity increases; however, comparison is
difficult as the different length chains can phase separate, and a
mixture of lamellae and cylinder phases is present instead of
gyroid at high χN.29−31

We used self-consistent field theory (SCFT) with a
multiblock model of the taper to obtain phase diagrams and
density profiles, and we applied the random phase approx-
imation (RPA) to find spinodal curves using both the
multiblock model and an exactly linear taper, as described in
the Methods. Figure 2 shows the critical point as a function of

taper size for both the normal and inverse tapered cases from
the RPA (both linear and multiblock model) and SCFT
(multiblock model). Notice that despite the relatively coarse
multiblock model for the taper there is little disagreement
between the RPA critical points for the exactly linear and
coarser models. The maximum error is 5%, which occurs for
large inverse tapers. The SCFT results lie nearly on top of the
RPA results, although there is a small (<1%) error due to the

Figure 2. Critical point χNcrit for a symmetric system vs taper size ( f T)
for normal (green) and inverse (purple) tapers. Solid curves are from
the RPA with the multiblock model (see Figure 1a); dashed curves are
for an ideal linear taper. Points are from SCFT with the multiblock
model.
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numerical difficulty of finding convergence of an ordered phase
near the ODT using SCFT.
For normal tapers, as the taper gets wider, the increased

difficulty of separating A and B means a larger χN is required to
form ordered phases. The inverse tapered system shows such a
trend at low f T, but at a steeper rate, then its critical χN peaks
and rejoins that of the normal taper at f T = 1. For short tapers,
the trend in (χN)crit is similar to that reported in experiment:
for f T = 0.2 the ODT of normal tapers is very similar to that of
diblocks, but there is a much larger gap between the ODTs of
the diblock and inverse tapered systems.18 A polymer with a
large inverse taper resembles an ABA′B′ tetrablock copolymer.
However, for a large enough inverse taper, the pure blocks at
either end of the taper are small and unimportant, so phase
separation occurs more readily. Note that the inverse and
normal tapered multiblock models are not exactly the same at
f T = 1. In a normal tapered system, the first and last blocks of
the taper are very small (see Figure 1a), whereas in an inverse
tapered system, the first and last blocks of the taper are the
larger of the local AB pair. In the limit of f T = 1, the pure blocks
at either end are removed, so the terminal blocks of the taper
become the terminal blocks of the polymer. It is therefore not
surprising that the ODT for the inverse tapered system is
slightly lower at f T = 1. This difference along with the
difference in the dashed and solid curves as a function of f T give
an idea of the accuracy of the multiblock model compared to an
ideal gradient model. The coarse-grained nature of the
multiblock model may actually better approximate certain
experimental systems whose composition profile in the taper
changes by small steps rather than truly linearly. This is due to a
synthetic procedure during which the composition of the
monomers is changed in a stepwise (rather than continuous)
manner as the polymerization of the taper region pro-
ceeds.17−19 However, neither model accounts for random
variability of the gradient region, the details of which may be
important in some cases; this has been explored for gradient
copolymers but is not considered here.20

Extending beyond the symmetric case, Figure 3 shows the
spinodal curves generated by the RPA for selected taper sizes as
a function of fA. For normal tapers, larger tapers shift the
spinodal to larger χN, but the shape of the curve is largely
unchanged. For a small inverse taper, the spinodal curve is
similar to that of a normal taper shifted to even higher χN.
Interestingly, for larger inverse tapers, the ordered phases
become easier to form for the most asymmetric case than at
slightly larger fA. This is because for large inverse tapers there
are significant nearly pure sections at either end of the taper, so
a symmetric polymer acts like an ABA′B′ tetrablock, whereas
the most asymmetric one acts like an ABA′ triblock.35−37
The major result of this study, phase diagrams for selected

tapered systems, is shown in Figure 4. As expected, adding
tapers shifts the ordered phases to higher χN, and this effect
becomes even larger for more asymmetric polymers because
many of the remaining minority (A) monomers are in the B
side of the tapered portion and are unable to cleanly phase
separate. The effect of adding tapers is not accounted for simply
by adjusting the effective χN relative to the diblock. As expected
if normal tapers act to relieve packing frustration, the gyroid
region of the phase diagram is widened by the introduction of
small to moderately sized normal tapers (see Figure 4ac). The
diblock gyroid phase has previously been calculated to occur
over a range in fA of 0.037 at its widest extent,

38 whereas for the
tapered systems, at f T = 0.3 this width is 0.049, and for f T = 0.5

this width is 0.075 (also, for f T = 0.5 and χN > 49.3, the only
nonlamellar structure is gyroid). However, when f T = 0.7, the
region of nonlamellar ordered phases is very small because
most of the polymer backbone is the taper, so there is only a
small window of possible fA values. Another effect to consider is
that the increased interfacial width of these systems may reduce
the tendency of the interface to curve. Since the interfacial
width of the 30% normal tapered system is small (see Figure 5),
the location of the curved phases is not noticeably shifted
versus the diblock. However, at 50% normal taper, the curved
phases are shifted slightly to smaller fA, and the 30% inverse
tapered case shows only a very small region of nonlamellar
(higher curvature) ordered phases. This can also be seen by the
location of the C/G/L triple point at fA = 0.450, 0.444, and
0.419 for normal tapers with f T = 0.3, 0.5, and 0.7, respectively
(and at fA = 0.421 for the 30% inverse tapers).
Lamellar density profiles corresponding to symmetric χN =

80 systems are shown in Figure 5 for the same four systems as
in Figure 4. These density profiles are close to the limiting cases
(they do not change much with further increases in χN).
Intuitively, the wider taper creates a wider interface and lowers
the maximum purity of A (or B) found in the middle of the
lamellae. 30% inverse tapers have an extremely wide interface
because the inverse taper is not able to orient itself along the
interface as easily.
Figure 6 shows the lamellar domain spacing for symmetric

diblock and normal and inverse tapered systems as a function of
χN. For normal tapers, as in diblocks, as χN increases, spacing
increases; the polymers stretch out to better segregate and
reduce interfacial area. For inverse tapered systems, there is a
different effect: for a large enough inverse taper (or high
enough χN), the polymer looks like an ABA′B′ tetrablock, and
to more cleanly order into a lamellar structure, it needs to fold

Figure 3. Spinodal curves as a function of total fraction of A ( fA)
calculated using the RPA for diblock (red, dashed), normal tapered
(green, solid), and inverse tapered (purple, dotted) copolymers, for
four different taper sizes as labeled. The limit of the model occurs
when the taper is at the end of the polymer. Therefore, the curves end
at fA = (1/2)f T (see Figure 1c), as indicated by the squares at the end
of the curves. Note that, due to symmetry, considering fA > 0.5 is
unnecessary.
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back and forth across the interface or bridge between more
than one lamellae.37 Related folding or looping behavior was
suggested to occur for experimental inverse tapered systems in
solvent, based on the size of their micelles.9 The inverse taper
folding results in significantly smaller lamellae and depends on
taper length and χN. The lamellar width of short inverse tapers
is similar to that of normal tapers at low χN and initially
increases as a function of χN, but due to increasing folding,

lamellar width later decreases at larger χN. In contrast, large
inverse tapered systems showed folding even near the ODT, so
an increase in χN only slightly stretched them out.
We employed SCFT to determine the phase behavior of

modified diblock copolymers that include a linear gradient
region (taper) between the two blocks. The size of the taper
can be used to control the phase behavior. As expected
intuitively and from experimental work, the ODT of the
tapered polymers moves to lower temperature or higher χN
compared to pure diblocks. However, tapered systems are not
the same as diblocks at a new effective χN; the morphology for
a given composition may change as a function of taper size (and
direction), and the density profiles can change significantly as
well. Inverse tapers at high enough χN tend to fold back and
forth across the interface, changing the lamellar spacing
significantly versus the diblock. The result for certain inverse
systems is a relative lack of change in the lamellar spacing as a
function of χN, meaning inverse tapered systems may be
attractive for applications where a constant spacing as a
function of temperature is desired. Normal tapers are predicted
to allow easier access to bicontinuous phases (only gyroid was
considered here), especially relevant for transport or separa-
tions applications.

■ METHODS
The phase behavior of the tapered gradient copolymers was
determined from SCFT as implemented in PolySwift++. The standard
SCFT method employed assumes incompressible Gaussian (random
walk) chains in a mean field that is generated self-consistently with the
density field. Specifics of the model and the numerical solution
method can be found in the Supporting Information and refs 32−34.

We also used the well-known RPA, which leads to relatively simple
equations for the structure factor of copolymers in the disordered
state, to compute the spinodal curves of the model system under the
same assumptions employed in our SCFT calculations. For this we
employ eqs 5 and 6 in Jiang et al.;19 this is a simple integral calculation
that finds the divergence of the first peak in the structure factor (where
spinodal decomposition will occur) based on the composition profile
of the polymer.

We use a “multiblock model” similar to the one of Jiang et al.19 to
approximate the gradient region in a way that is straightforward to
implement in SCFT. In this model, the taper is made of alternating A

Figure 4. Tapered copolymer phase diagrams from SCFT (blue) for
(a) 30% normal, (b) 30% inverse, (c) 50% normal, and (d) 70%
normal tapers. Morphologies are labeled L for lamellae, G for gyroid,
C for hexagonally packed cylinders, S for BCC spheres, and D for
disordered (other phases were not considered). For comparison, the
diblock SCFT phase diagram is shown in gray in part (a) (adapted
from Cochran et al.39). The axis ranges of each plot are the same. The
limit of the model occurs at fA = (1/2)f T (see Figure 1c), so the 50%
and 70% phase diagrams are limited to the right of the vertical lines at
fA = 0.25 and 0.35, respectively. The curves are approximate smoothed
connections between the calculated phase boundary points (see the
Supporting Information for the tabulated values).

Figure 5. Lamellar density profile showing the volume fraction of A
monomers (ϕA) versus perpendicular distance across the lamellae of
width Lz at χN = 80 for symmetric ( fA = f B = 0.5) systems for normal
(left) and inverse (right) tapers. The red curve shows the diblock
profile for comparison. The taper fractions are: f T = 0.3 (blue, dashed),
f T = 0.5 (green, dash-dotted), and f T = 0.7 (black, dotted).

Figure 6. Lamellar spacing Lz vs χN for symmetric ( fA = f B = 0.5)
diblock (red, dashed line with exes), normal tapered (green, solid lines
with filled symbols), and inverse tapered (purple, dotted lines with
open symbols) systems with f T = 0.3 (squares), f T = 0.5 (circles), and
f T = 0.7 (diamonds).
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and B blocks; each AB pair is the same size, but the composition varies
to approximate the gradient (see Figure 1). Each two-block division
was 2% of the polymer length (e.g., a 30% taper would be made of 30
blocks), chosen to keep the computations reasonable while still having
an accurate description of a linear gradient (see Figure 2).
Only the major diblock morphologies were considered: lamellae

(L), double gyroid (G), hexagonally packed cylinders (C), and body-
centered cubic (BCC) packed spheres (S). The minor phases (close
packed spheres and the orthorhombic Fddd interpenetrating network)
that occur on the full AB diblock SCFT phase diagram were not
considered because: (1) they represent a very small portion of the
phase diagram, (2) they do not change the overall picture (packing of
spheres and differences between network phases are not of primary
importance), and (3) including them significantly increases the
computational requirements.6

■ ASSOCIATED CONTENT

*S Supporting Information
Numerical phase boundaries, details of the SCFT calculation,
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